Banner-SRRT    CRT-AG_Online_Banner_240x60px_070917 CanControl_240x60_
Chip kleiner als eine Münze

(18.10.2019) ETH-Forschende haben ein kompaktes Infrarot-Spektrometer entwickelt, das sich auf einem kleinen Chip unterbringen lässt. Damit ergeben sich interessante Perspektiven – im Weltall und im Alltag.


18.10.-ETH

Mit diesem ca. 2 cm langen Chip lässt sich das Wellenspektrum von Infrarotlicht präzis aufschlüsseln. (Bild: ETH Zürich / Pascal A. Halder)



Ein Handy kann heute alle möglichen Aufgaben erledigen: Fotos und Videos aufnehmen, Nachrichten versenden, die gegenwärtige Position bestimmen – und natürlich auch Telefongespräche übermitteln. Und vielleicht kann man mit diesen vielseitigen Geräten auch einmal den Alkoholgehalt im Bier oder den Reifegrad von Früchten bestimmen.


Die Idee, Mobiltelefone für chemische Analysen zu nutzen, scheint auf den ersten Blick wagemutig. Denn die heutigen Infrarot-Spektrometer, die für solche Analysen eingesetzt werden, sind in der Regel mehrere Kilogramm schwere Kisten, die sich kaum in ein handliches Gerät integrieren lassen. Forschenden der ETH Zürich ist nun aber ein wichtiger Schritt gelungen, diese Vision dennoch Realität werden zu lassen: David Pohl und Marc Reig Escalé aus der Gruppe von Rachel Grange, Professorin für optische Nanomaterialien am Departement Physik, haben zusammen mit weiteren Kollegen einen rund zwei Quadratzentimeter grossen Chip entwickelt, mit dem sich Infrarotlicht auf die gleiche Weise analysieren lässt wie mit einem herkömmlichen Spektrometer.


Lichtleiter statt Spiegel
Bei einem herkömmlichen Infrarotspektrometer wird das einfallende Licht in zwei Pfade aufgeteilt und anschliessend an zwei Spiegeln reflektiert. Das zurückgeworfene Licht wird wieder zusammengeführt und mit einem Fotodetektor gemessen. Verschiebt man nun einen der beiden Spiegel, kann man aus dem Interferenzmuster den Anteil der verschiedenen Wellenlängen im Eingangssignal bestimmen. Da chemische Substanzen charakteristische Lücken im Infrarot-Wellenspektrum erzeugen, lässt sich anhand des gemessenen Spektrums nachweisen, welche Substanzen in der untersuchten Probe in welcher Konzentration vorkommen.


Auf diesem Messprinzip basiert auch das von den ETH-Forschenden entwickelte Mini-Spektrometer. Das einfallende Licht wird allerdings nicht mehr mit Hilfe von beweglichen Spiegeln analysiert, sondern mit speziellen Lichtleitern, deren optischer Brechungsindex sich von aussen über ein elektrisches Feld verändern lässt. «Das Variieren des Brechungsindexes hat einen ähnlichen Effekt wie das Verschieben der Spiegel», sagt David Pohl. «Deshalb können wir mit dieser Anordnung das Spektrum des einfallenden Lichtes ebenfalls auflösen.»


Anspruchsvolle Strukturierung
Je nachdem, wie der Lichtleiter konfiguriert ist, lassen sich dabei unterschiedliche Bereiche des Lichtspektrums untersuchten. «Mit unserem Spektrometer kann man im Prinzip nicht nur Infrarotlicht, sondern auch sichtbares Licht analysieren, wenn man den Lichtleiter entsprechend konfiguriert», erläutert Marc Reig Escalé. Im Gegensatz zu anderen integrierten Spektrometern, die nur einen engen Bereich des Lichtspektrums abdecken können, hat das von Granges Gruppe entwickelte Spektrometer den grossen Vorteil, dass es einen breiten Wellenlängenbereich analysieren kann.


Die Entwicklung der ETH-Physiker hat neben der Kompaktheit noch zwei weitere Vorteile: Das Spektrometer auf dem Chip muss nur einmal kalibriert werden, während herkömmliche Geräte immer wieder geeicht werden müssen; und es benötigt weniger Unterhalt, da es keine beweglichen Teile mehr gibt.


Für das Spektrometer verwendeten die ETH-Forschenden ein Material, das auch in der Telekommunikationsbranche als Modulator zum Einsatz kommt. Das von ihrer Gruppe verwendete Material hat zwar viele positive Eigenschaften. Als Lichtleiter hält es das Licht jedoch im Inneren gefangen. Das ist ungünstig, denn eine Messung ist nur möglich, wenn ein Teil des zusammengeführten Lichts nach aussen dringen kann. Die Wissenschaftler haben deshalb auf den Lichtleitern feine Metallstrukturen angebracht, die das Licht nach aussen streuen. «Es brauchte viel Arbeit im Reinraum, bis wir das Material in der gewünschten Form strukturieren konnten», sagt Grange.


Ideal für den Weltraum
Bis das heutige Mini-Spektrometer tatsächlich in ein Handy oder ein anders elektronisches Gerät eingebaut werden kann, braucht es allerdings noch einiges an technischer Weiterentwicklung. «Im Moment messen wir das Signal mit einer externen Kamera», erklärt Grange. «Wenn wir ein kompaktes Gerät haben wollen, müssen wir diese also auch noch integrieren.»


Ursprünglich hatte die Physikerin nicht chemische Analysen, sondern eine ganz andere Anwendung im Visier: In der Astronomie liefern Infrarotspektrometer wichtige Informationen über ferne Himmelsobjekte. Weil die Erdatmosphäre viel Infrarotlicht absorbiert, werden diese Instrumente idealerweise auf Satelliten im Weltraum stationiert. Dabei ist es natürlich ein grosser Vorteil, wenn man ein kompaktes, leichtes und stabiles Messgerät zur Verfügung hat, das sich vergleichsweise kostengünstig ins All befördern lässt.


Autor: Felix Würsten


Literaturhinweis:
Pohl D et.al.: An integrated broadband spectrometer on thin-film lithium niobate. Nature Photonics, 8. Oktober 2019. DOI: 10.1038/s41566-019-0529-9


Weitere Inofrmationen:
www.ethz.ch
www.ong.ethz.ch


Kontakt:

Rachel Grange
Institut für Quantenelektronik
ETH Zürich, HPT H 2
Auguste-Piccard-Hof 1
CH-8093 Zürich
+41 44 633 37 08
range@phys.ethz.ch

Alle News






Schilling-Engineering_Banner_120x60

Banner_LifeScience_120x60px_180423


Hotec_Systems_klein

Final Opragon CC Report